skip to main content


Search for: All records

Creators/Authors contains: "Hernández, Jonay I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The investigation of the metal-poor tail in the Galactic bulge provides unique information on the early Milky Way assembly and evolution. A chemo-dynamical analysis of 17 very metal-poor stars (VMP, [Fe/H]<−2.0) selected from the Pristine Inner Galaxy Survey was carried out based on Gemini/GRACES spectra. The chemistry suggests that the majority of our stars are very similar to metal-poor stars in the Galactic halo. Orbits calculated from Gaia EDR3 imply these stars are brought into the bulge during the earliest Galactic assembly. Most of our stars have large [Na,Ca/Mg] abundances, and thus show little evidence of enrichment by pair-instability supernovae. Two of our stars (P171457 and P184700) have chemical abundances compatible with second-generation globular cluster stars, suggestive of the presence of ancient and now dissolved globular clusters in the inner Galaxy. One of them (P171457) is extremely metal-poor ([Fe/H]<−3.0) and well below the metallicity floor of globular clusters, which supports the growing evidence for the existence of lower-metallicity globular clusters in the early Universe. A third star (P180956, [Fe/H]∼−2) has low [Na,Ca/Mg] and very low [Ba/Fe] for its metallicity, which are consistent with formation in a system polluted by only one or a few low-mass supernovae. Interestingly, its orbit is confined to the Galactic plane, like other very metal-poor stars found in the literature, which have been associated with the earliest building blocks of the Milky Way.

     
    more » « less
  2. null (Ed.)
    Abstract The S2 stream is a kinematically cold stream that is plunging downwards through the Galactic disc. It may be part of a hotter and more diffuse structure called the Helmi stream. We present a multi-instrument chemical analysis of the stars in the metal-poor S2 stream using both high- and low-resolution spectroscopy, complemented with a re-analysis of the archival data to give a total sample of 62 S2 members. Our high-resolution program provides α-elements (C, Mg, Si, Ca and Ti), iron-peak elements (V, Cr, Mn, Fe, Ni), n-capture process elements (Sr, Ba) and other elements such as Li, Na, Al, and Sc for a subsample of S2 objects. We report coherent abundance patterns over a large metallicity spread (∼1 dex) confirming that the S2 stream was produced by a disrupted dwarf galaxy. The combination of S2’s α-elements displays a mildly decreasing trend with increasing metallicity which can be tentatively interpreted as a “knee” at [Fe/H]<−2. At the low metallicity end, the n-capture elements in S2 may be dominated by r-process production however several stars are Ba-enhanced, but unusually poor in Sr. Moreover, some of the low-[Fe/H] stars appear to be carbon-enhanced. We interpret the observed abundance patterns with the help of chemical evolution models that demonstrate the need for modest star-formation efficiency and low wind efficiency confirming that the progenitor of S2 was a primitive dwarf galaxy. 
    more » « less
  3. Abstract

    We present optical, infrared, ultraviolet, and radio observations of SN 2022xkq, an underluminous fast-declining Type Ia supernova (SN Ia) in NGC 1784 (D≈ 31 Mpc), from <1 to 180 days after explosion. The high-cadence observations of SN 2022xkq, a photometrically transitional and spectroscopically 91bg-like SN Ia, cover the first days and weeks following explosion, which are critical to distinguishing between explosion scenarios. The early light curve of SN 2022xkq has a red early color and exhibits a flux excess that is more prominent in redder bands; this is the first time such a feature has been seen in a transitional/91bg-like SN Ia. We also present 92 optical and 19 near-infrared (NIR) spectra, beginning 0.4 days after explosion in the optical and 2.6 days after explosion in the NIR. SN 2022xkq exhibits a long-lived Ci1.0693μm feature that persists until 5 days post-maximum. We also detect Ciiλ6580 in the pre-maximum optical spectra. These lines are evidence for unburnt carbon that is difficult to reconcile with the double detonation of a sub-Chandrasekhar mass white dwarf. No existing explosion model can fully explain the photometric and spectroscopic data set of SN 2022xkq, but the considerable breadth of the observations is ideal for furthering our understanding of the processes that produce faint SNe Ia.

     
    more » « less